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Abstract

Graph clustering on text-attributed graphs
(TAGS), i.e., graphs that include natural lan-
guage text as additional node information, is
typically performed using graph neural net-
works (GNNs), which forego the text in lieu
of embeddings. While GNN methods ensure
scalability and effectively leverage graph topol-
ogy, text attributes contain rich information that
can be leveraged using large language mod-
els (LLMs). However, many real-world ap-
plications have limited hardware resources or
LLM API call budgets that prevent their naive
use. To reconcile these constraints when per-
forming clustering on TAGs, we propose an
active learning framework that performs graph
clustering using LLM refinment (GCLR) by
selectively prompting an imperfect LLM oracle
for feedback and, subsequently, finetuning the
GNN-based clustering solution to incorporate
the feedback. GCLR uses different prompt-
ing strategies to improve the LLM’s reliability
as an oracle and uses noise-controlling fine-
tuning to handle this imperfect, but useful feed-
back. Extensive experiments demonstrate that
GCLR can significantly improve clustering per-
formance over state-of-the-art GNN methods.

1 Introduction
Graph clustering seeks to perform an unsupervised
assignment of nodes to different clusters such that
the resulting assignments capture salient topology
and uncover useful concepts. Notably, many real-
world problems can naturally be formulated as
graph clustering, including recommending groups
of items in an e-commerce shopping graph or iden-
tifying groups of friends in social networks (New-
man, 2006; Newman and Reinert, 2016; Yang and
Leskovec, 2012). Most modern, performative clus-
tering methods utilize graph neural network (GNN)
encoders due to their expressivity (Xu et al., 2019),
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scalability, and ability to effectively handle vector-
valued node attributes (Kipf and Welling, 2017;
Veličković et al., 2018).

Recently, however, there has been growing inter-
est in text-attributed graphs (TAGs) (Yang et al.,
2021; Yan et al., 2023), where natural language text
is available as an additional node attribute. Unfortu-
nately, GNNs are not able to directly handle this in-
formation rich text and instead utilize semantic em-
beddings, potentially limiting overall performance.
To this end, a variety of (pre/co/joint) training-
based (Chien et al., 2022; Zhao et al., 2023a; Ioan-
nidis et al., 2022; Mavromatis et al., 2023; Xie et al.,
2023) and graph specific prompting-based strate-
gies (He et al., 2023; Zhao et al., 2023c; Fatemi
et al., 2023; Guo et al., 2023; Tang et al., 2023)
have been recently proposed for using large lan-
guage models (LLMs) (Touvron et al., 2023; Bai
et al., 2022) in conjunction with GNNs on super-
vised tasks, e.g., link prediction, node classification,
and graph classification, to directly handle this text
and take advantage of the LLM’s impressive world-
knowledge.

While clustering on TAGs could also benefit
from joint LLM+GNN methods, it not only re-
mains unclear how to adapt existing supervised
approaches for unsupervised graph clustering, but
also is prohibitively expensive in many real-world
applications due to significant hardware require-
ments, incurred through training or hosting LLMs,
or API expenditure, incurred by prompting over
large sets of nodes. Given that GNN clustering
methods are scalable to large graphs by design and
have much lighter hardware requirements (Fettal
et al., 2022; Devvrit et al., 2022; Liu et al., 2023;
Bianchi et al., 2020; Ying et al., 2018; Tsitsulin
et al., 2023), it is more cost effective to selectively
use the LLM to improve the GNN’s initial clus-
tering assignment; thereby limiting the overall ex-
penditure. While a natural framework for such
a resource constrained setting is active learning
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Figure 1: Overview of GCLR. Graph clustering is a fundamental graph machine learning task (Liu et al., 2022;
Tsitsulin et al., 2023) where nodes must be assigned to different clusters to uncover interesting semantic concepts.
This unsupervised task has many practical applications, including identifying communities in social networks (Girvan
and Newman, 2002), analyzing protein-protein interaction networks (Rives and Galitski, 2003) and making targeted
marketing recommendations (Tang and Liu, 2010). Our proposed method, GCLR, is designed to improve the quality
of a GNN-based graph clustering solution using active learning. In particular, given a starting GNN clustering, F,
GCLR identifies uncertain nodes, obtains LLM guidance through prompting and then fine-tunes the GNN.

(AL) (Ren et al., 2020; Sener and Savarese, 2018;
Ma et al., 2023; Kazemi et al., 2022), which se-
lectively queries an expensive oracle for labels to
maximize performance under a fixed budget, there
are several differences arising from an LLM oracle
and the unsupervised nature of graph clustering
that must be addressed. Namely, that (i) it is un-
clear how to select, query, and incorporate LLM
feedback to improve GNN clustering solutions, and
(ii) the LLM is an imperfect oracle, complicating
how the model should be updated.

Our Work. To this end, we propose
GCLR (Graph Clustering with LLM Refinement),
a flexible active learning framework specifically
designed for clustering on TAGS. It uses carefully
designed prompting strategies to elicit more reli-
able and useful feedback for clustering from the
LLM and uses simple strategies when fine-tuning
to improve tolerance to noisy labels, overall out-
performing GNN-based clustering methods. Our
contributions are summarized as follows:
• Eliciting Graph Clustering Feedback from
LLMs (Sec. 3.1.) We rigorously study how to
obtain feedback from LLMs that is both amenable
to clustering and a useful signal for fine-tuning.
• Incorporating Noisy Feedback from LLMs
(Sec. 3.2.) Given the feedback provided by the
LLM, we propose training protocols that support
fine-tuning deep graph clustering algorithms with
imperfect feedback.
• Extensive Experiments Refining Clustering
with GCLR (Sec.4) Across three text-attributed
graphs with four different graph clustering algo-
rithms, we demonstrate that GCLR can improve
the graph clustering performance.

Due to space constraints, we have included re-

lated work on deep attributed clustering and meth-
ods that combine LLMs and GNNs to perform
learning tasks in App. B.

2 Problem Formulation
In this section, we formally introduce our problem
setting, as well as assumptions and constraints.

Notations. Let G = (V, E , T ,X , [Y]) represent
a graph with its respective node set, edge set, raw
node-based text information, embedded node at-
tribute information (e.g., some embedding of a
node’s text), and optional ground-truth cluster as-
signment. Further, let N be the number of the
nodes, M be the number of edges, K be the de-
sired (or ground-truth) number of clusters, d the di-
mension of the hidden representation, A ∈ RN×N

be the corresponding adjacency matrix, and X ∈
RN×d be a matrix representation of X .

Problem statement. Let F : (A,X) → ZN×d be
a GNN-based encoder that outputs d-dimensional
node representations, and C : (Z,K) → [0,K]N

be an embedding-based clustering algorithm, e.g.,
k-means, pooling layer, where C may optionally
be parameterized and optimized end-to-end with
the encoder. Then, the clustering assignments,
KN×K can be obtained as: K = C(F(A,X),K).
K is assumed to be an imperfect assignment, i.e.,
there exist samples that are mis-assigned to clus-
ters and/or cluster topics are noisy. We seek to
use the LLM’s world-knowledge and natural lan-
guage understanding to improve K. Given that
K is already topology-aware due to the GNN en-
coder and semantics-aware since pre-trained sen-
tence transformers are used to encode the node-
level raw text attributes, the LLM provides an com-
plementary source of information. Indeed, the per-
formance of LLMs in zero-shot node classification
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suggests that their world knowledge is well-suited
for graph tasks. We assume pre/co/joint-training is
prohibitively expensive and only prompting is avail-
able to obtain LLM feedback, and further make
the reasonable assumption that there is a limited
budget, B, for API calls/prompting. Thus, our
objective is to induce the best refined assignment,
Krefine, while remaining under budget. This prob-
lem setting is amenable to active learning, which
we introduce conceptually here but note that subse-
quent sections will discuss how GCLR instantiates
AL for clustering.

Active Learning. While much of deep learning
is data-intensive and requires large labeled datasets
for strong performance, deep active learning seeks
to maximize performance in a setting where labels
or feedback is expensive to obtain. AL consists of
three key components: a query function, Q, which
determines which samples from the unlabeled data
pool should be selected for obtaining feedback, an
oracle, which provides feedback to create a labeled
dataset, Dfeedback, and a training protocol, which
defines a loss, Lfeedback, and update procedure for
how the model will incorporate said feedback.

Query functions (Ash et al., 2020; Wang and
Shang, 2014; Ducoffe and Precioso, 2018) are
broadly designed to identify the samples where
labeling will have the most impact. Effective func-
tions often use sample uncertainty, difficulty or
coverage to select points. The oracle serves as a
proxy for an expensive but reliable labeling pro-
cedure, for example human annotators or wet-lab
experiments. The training protocol is designed to
ensure stability, and avoid over-fitting when operat-
ing over small batches of data. While some graph
AL strategies have been recently proposed, these
methods focus on semi-supervised node classifica-
tion and are not directly applicable to our problem
setting.

Moreover, we emphasize that while AL tradi-
tionally assumes that (i) the oracle is trust-worthy,
we do not know apriori the reliability of the LLM’s
feedback and (ii) our problem is unsupervised, so
existing AL query functions, and training proto-
cols may not be well-suited (Li et al., 2021; Liu
et al., 2020; Ostapuk et al., 2019). Lastly, we note
that while it is possible to receive dataset-level or
task-level feedback, we focus on node-level feed-
back as it is more scalable for larger graphs (only
a subset of nodes will receive feedback), and is
more amenable with contrastive and pooling-based
graph clustering algorithms, as they already pro-

Figure 2: Unaligned Notions of Similarity. The fol-
lowing stochastic block model graph has clusters that
correspond to whether a particular animal’s name begins
with “A" or “B." However, an alternative clustering ac-
cording to “land" vs. “aquatic" animals is also valid
and more semantically interesting. Indeed, when GPT-
3.5 is asked whether a “Baboon" is more similar to
a “Bluegill" or “Antelope," it replies with “Antelope"
as it is also a land mammal. This emphasizes that (i)
simple pairwise comparisons may not be sufficient for
providing feedback and (ii) LLMs and GNN clustering
algorithms may utilize disparate notions of similarity.

vide node-level embeddings and assignments. In
subsequent sections, the design of Q and Lfeedback
for clustering on TAGs is discussed in detail.

3 GCLR: Graph Clustering with LLM
Refinement

In this section, we formally introduce GCLR, our
framework for graph clustering with LLM refine-
ment (Fig. 1). We begin by discussing how to
obtain useful feedback for graph clustering from
LLMs and then present how to identify and refine
the initial solution accordingly.

3.1 Eliciting Feedback from LLM for Graph
Clustering

While feedback in traditional AL typically corre-
sponds to an oracle selecting a label from a prede-
fined set of classes, it is less clear what form the
feedback should take when performing clustering.
Intuitively, feedback should help improve the sim-
ilarity of the queried node with the cluster that it
belongs to. However, the precise form of the feed-
back may vary, and it’s unclear how to prompt the
LLM to accurately ascertain this information.

To this end, we discuss the advantages and disad-
vantages of three different strategies for prompting
the LLM to obtain clustering feedback. We begin
by discussing a recently proposed strategy for LLM
guided text clustering.

Triplet-Based Prompting. ClusterLLM (Zhang
et al., 2023b) is a recently proposed state-of-the-
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(a) Triplet Based Feedback (b) In-Context Based Prompt (c) Concept Based Prompt

Figure 3: Example of LLM Feedback. Using the graph in Fig. 2, we prompt chat-gpt-3.5-turbo with different
strategies to demonstrate the importance of aligning the LLM’s and GNN’s implicit similarity functions. Indeed, we
see that triplet-based prompting can be unreliable as it does not allow the LLM to infer the underlying similarity.
For example, with the query, “Baboon" with triplets containing the land animals from from Cluster 1 (starts with
B) and aquatic animals from Cluster 2, the LLM assigns Baboon to cluster 1, which is consistent with the graph
solution. However, when we prompt chat-gpt-3.5 with a triplet containing aquatic animals from Cluster 1 and
land animals from Cluster 2, the LLM assigns the query to Cluster 2 as it is also a land animal. In contrast, we find
that both concept-based and incontext-based prompting are able to correctly infer the GNN’s similarity function.

art LLM guided text clustering method that first
selects uncertain samples (e.g., queries), Qi, and
two random samples from each query’s two near-
est clusters, and then prompts the LLM to predict
which of the two samples is “more similar" to Qi;
the more similar sample is considered a “positive"
sample and the other is a “negative" sample. Here,
Dfeedback corresponds to the set of triplets (query,
positive, negative) determined by the LLM and
Lfeedback is InfoNCE. While such an approach can
conceptually be applied to graph clustering, there
are some limitations.

Insofar as clustering requires learning a simi-
larity function that can be used to partition sam-
ples into meaningful groups, it is important that
the oracle is aware of this function so the result-
ing feedback is aligned to the existing partitioning.
In text clustering, since both the encoder (BERT,
E5, etc) and the larger, oracle LLM (Chat-GPT,
Llama) are text based models, they share a simi-
lar prior for this similarity function. In contrast,
when performing graph clustering, the GNN in-
corporates topological information unavailable to
the LLM and may utilize a different function than
the LLM. Indeed, in Fig. 2, we construct a sim-
ple synthetic example where the GNN and LLM
utilize different similarity functions to identify con-
cepts by design. We observe, in Fig. 3a, that the
oracle (chat-gpt-3.5-turbo) provides unreliable

feedback when the triplet prompt contains random
samples that do not overlap with the GNN’s sim-
ilarity function, but is reliable when the random
samples are selected to align with the LLM’s im-
plicit similarity function.

Finally, we note that the performance of triplet-
based feedback is closely tied to the quality of
the initial clustering solution, artificially handicap-
ping the LLM’s performance. Given that the ini-
tial clustering solution is imperfect, randomly se-
lecting samples from the two closest clusters can
create triplets that do not actually represent the
corresponding clusters, leading the LLM to per-
form a meaningless selection. Moreover, there is a
loose upper-bound of the triplet formulation as the
queries’ “correct" cluster must be within the top-2
closest clusters. If this is not the case, the LLM
will necessarily have to respond to an ill-formed
triplet and will provide incorrect feedback. Due
to the rapidly increasing capabilities of LLMs, it
is possible that future LLMs will achieve perfect
performance on valid triplets, however, the error
incurred by ill-formed triplets is irreducible.

In-Context Similarity Learning. As discussed
above, it is critical that the LLM can infer the sim-
ilarity function implemented by the GNN. Given
the impressive in-context learning capabilities of
LLMs (Kaplan et al., 2020; Brown et al., 2020), we
consider a prompt that allows the LLM to directly
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infer it by providing several examples of the node’s
raw text and their corresponding cluster IDs, and
the text of the unlabeled query (See Fig. 3b for
an example.) Here, the LLM can be seen as per-
forming a prediction task amongst pseudo-labels
defined by the initial clustering, where Dfeedback =
{([0, . . .K]|i ∈ Q}. We note that the choice of
Lfeedback is flexible and discuss it in detail later. No-
tably, by ensuring that the prompt contains samples
from all clusters, the LLM can (i) more holistically
infer what concepts underlie clusters and (ii) pre-
dict an assignment for a query that does not belong
to the top-2 clusters. This allows us to circumvent
the previous issue where the upper-bound on re-
fined performance was restricted by the number
of samples where the preferred assignment was
contained in the top-2 clusters.

However, directly inferring the similarity func-
tion from in-context examples becomes more dif-
ficult as the number of clusters grows as (i) the
number of exemplars must correspondingly reduce
to remain within the context length and (ii) if the
number of clusters is sufficiently large, it is not pos-
sible to provide exemplars from all clusters. Fur-
thermore, the selection and ordering of exemplars
can have a significant impact of the LLM’s ability
to correctly predict a query’s assignment, leading
to potential loss of performance during fine-tuning.

Concept-based Prompting. To avoid
the aforementioned issues with incontext-
prompting, we draw inspiration from topic
modeling (Viswanathan et al., 2023; Pham et al.,
2023) and design an additional "concept-based"
prompting strategy where we first prompt the
LLM to infer the concepts that were used to group
samples and then create a prediction task where the
LLM is prompted to select amongst the generated
concepts. (See Fig. 3c for an example.) To
generate concepts, we provide the LLM samples
from each cluster and ask it to provide a "title"
and "short description" that explains how these
samples are grouped together. These generated
titles and descriptions are then provided as options
for the LLM to identify the most similar cluster
for a particular query. Notably, by providing the
titles/descriptions of all clusters, we can avoid
the upper-bound encountered by triplets while
simultaneously allowing the LLM to at least
partially infer the GNN’s similarity function.

Moreover, by using cluster titles/descriptions in-
stead of multiple exemplars per cluster, concept-
based prompting uses much shorter prompts and

better scale as the number of clusters grows in
comparsion to in-context prompting. Indeed, as
the number of clusters grows, In-Context prompt-
ing would require decreasing the number of exem-
plars per cluster to fit the context length. More-
over, this context must be passed every time feed-
back is obtained. In contrast, the titles/descriptions
are generated once in a preprocessing step, and
subsequently reused through a shorter, multiple
choice-style prompt. Finally, we note that creating
titles/descriptions may help denoise the exemplars
as the LLM seeks to understand how they were
grouped together.

Experimental Setup. We verify the effectiveness
of the proposed feedback elicitation strategies on
several public graph datasets, where the provided
node labels serve as ground-truth cluster labels.
mixtral-8x-7b is used as the oracle, and four dif-
ferent graph clustering backbones are used to ob-
tain the initial clustering solutions. We sort the
samples according to the entropy of the distance
to the two nearest clusters (a proxy for sample dif-
ficulty) and prompt the LLM for each sample as
per the discussed strategies. Please see App. E
for example prompts, comprehensive experimental
details and dataset statistics.

Results. The following observations are made from
Table 1. We observe that across datasets and clus-
tering methods, that the “concepts" strategy is the
best or second best performing prompting strategy
most often. While In-Context prompting achieves
comparable performance on some datasets, we note
that it is significantly more expensive. Indeed,
every InContext prompt contains multiple exem-
plars per cluster, while “concepts" only processes
these exemplars once to obtain the generated titles
and descriptions, which are then directly used in
the prompt. “Triplets" is the cheapest strategy in
terms of token length, but lags behind on perfor-
mance, failing to achieve the best performance on
any dataset. Lastly, we note that the GNN outper-
forms the LLM on full dataset (100th percentile)
accuracy on 9/12 settings, indicating that, in addi-
tion to being prohibitively expensive, prompting
the LLM for every node would not be as effective
as the initial GNN solution. Indeed, there are sev-
eral situations where the LLM’s feedback is less
effective than the GNN’s, highlighting that care
must be taken when updating the GNN.
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Table 1: Reliability of LLM as an Annotator. The ac-
curacy of the GNN-based clustering solution and three
prompting strategies are reported at the 10\50\100-th
most difficult percentile of the dataset. The best perfor-
mance overall is bolded, while any prompting-based
method is colored if it exceeds the accuracy of the GNN,
and the 2nd best prompting based method is underlined.

Dataset Method GNN Concepts Incontext Triplets

Graph Only LLM Only

citeseer diffpool 32.1\36.2\49.7 36.2 \41.1 \49.1 34.6 \36.2 \46.7 29.2\34.1\44.0
dinknet 40.6\54.7\70.3 30.8\32.9\47 48.7\48.3\59.6 43.1\50.6\62.1
dmon 36.5\38.2\44.1 40.9\39.9\43.9 36.2\37.7\42.9 36.8\38\41.7
mincut 35.8\52.2\66.5 38.4\46.1\58.5 42.1\50.5\60.5 34.3\46.5\57.1

cora diffpool 32.6\40\54.7 35.6\36.0\37.7 34.4\36.6\50.2 33.7\36.9\48.8
dinknet 37.4\50.7\65.8 32.2\36.8\39 24.8\36.0\52.7 35.2\47\58.2
dmon 42.6\52.4\60.9 36.3\41.4\40.7 46.3\51.3\56.9 40\47.9\54
mincut 40\53.6\68.4 42.2\46.5\55.7 43.7\50.5\63.3 37.8\49.8\60.9

wikics diffpool 25.5\32.2\48.3 36.0\40.4\52.7 33.9\37.1\47.9 25.9\30.8\44.2
dinknet 37.7\51.2\66.5 51.2\56.5\64.8 35.8\36.9\51.1 35.0\44.5\54.8
dmon 28.1\31.2\36.9 55.2\55.2\57.2 39.9\41.3\41.3 28.7\31.2\35.8
mincut 36.5\24.4\26.9 31.9\29.6\29.8 37.5\27.9\31.0 32.4\24.1\25.2

3.2 Refining GNN-Based Clustering with
Feedback

While the proposed prompting strategies help im-
prove the LLM’s feedback, we must now incor-
porate this imperfect feedback into the GNN to
scalably improve the overall clustering solution.

Finetuning Setup. While reconstructive (Zhang
et al., 2023a; Bo et al., 2020) and adversarial frame-
works (Gong et al., 2022) were initially popular for
graph clustering, we focus on more recent con-
trastive (Liu et al., 2023; Xia et al., 2022; Thakoor
et al., 2022; Devvrit et al., 2022) and pooling-based
methods (Tsitsulin et al., 2023; Bianchi et al., 2020;
Ying et al., 2018) as they are more scalable and
performative. Furthermore, there is extensive liter-
ature on fine-tuning contrastively pre-trained mod-
els (typically for supervised tasks) that we can
leverage when defining Lfeedback. Indeed, both
in-context and concept-based prompting induce a
dataset, Dfeedback = {([0, . . .K]|i ∈ Q}, that con-
sists of queried nodes and their predicted cluster
assignments. Thus, we can consider refinement as a
supervised task with LLM-provided pseudo-labels.

When working with pooling-based methods
(DMon, MinCut, and DiffPool, etc), F directly
predicts the cluster assignment as the node fea-
tures are pooled to the number of clusters. For
contrastive methods like DinkNet, we can initial-
ize a classifier using parameterized cluster centers
or those obtained using KMeans. Then, given the
classifier and Dfeedback, we can naturally define
Lfeedback(Dfeedback,F) using the cross-entropy
loss. While other losses, such as triplet (Hinton
and Roweis, 2003), InfoNCE (), SupCon (Khosla

et al., 2020), are certainly possible, we empiri-
cally find that cross-entropy is effective. However,
since Dfeedback is expected to contain incorrect la-
bels, but the error-generating process is unknown,
naively training on the labels may diminish perfor-
mance. Thus, we consider the following simple
but effective strategies for improving the finetuning
performance.

Strategies for Handling Noisy Labels. Given
that our prompting strategies induce a classification
task, we use the model’s predicted confidence in
order to eliminate potentially noisy labels. Namely,
we compute the LLM’s confidence in its predic-
tions by obtaining log-probability of the top-2 to-
kens corresponding to cluster predictions. Alter-
native prompting strategies and specialized losses
have been proposed for better calibration (Tian
et al., 2023; Yin et al., 2023; Zhou et al., 2023)
but we do not consider them due to their additional
expense. Empirically, we find that token-level log
probability is sufficient.

To further stabilize and improve training, we
augment Dfeedback with samples well-clustered
by the GNN, where probits of the predicted clus-
ters are used to identify confident assignments.
The loss is computed separately for the LLM-
labeled and GNN-labeled samples, and aggregated
as αLfinetune,LLM + βLfinetune,GNN , where α
and β are constrained to be a convex combination.
By varying α and β, we can express different lev-
els of certainty in the feedback. In practice, we
find setting α and β to 0.5 leads to strong perfor-
mance. Since the optimal weighting is not known
apriori, creating a simple deep ensemble (Laksh-
minarayanan et al., 2017) by varying α, β to train
multiple independent models can further improve
performance. Though this incurs additional train-
ing expenditure, it is not substantial with respect
to training the initial model as clustering losses
often approximate quadratic operations, or obtain-
ing feedback. We assess the effectiveness of each
of these components and GCLR as a whole in the
following section.

Scaling to Larger Graph. GCLR’s scalability
is determined by the budget and underlying GNN
clustering solution. Indeed, larger graphs may re-
quire a larger budget in order to obtain feedback
on similar portions of the dataset. However, we
note that fine-tuning remains scalable due to use of
the cross-entropy loss, which can be easily batched,
and will not be as expensive training the initial clus-
tering solution. Moreover, GNNs are fairly small,
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Table 2: LLM Labels Provide Complementary Information For Active Learning. Here, we compare the
performance of different feedback mechanisms and finetuning losses. We observe that (i) while both LLM (9/12
Acc.) and GNN (10/12 Acc) feedback generally improves performance over the initial starting solution, that LLM
feedback with the cross entropy loss achieves the best accuracy overall (8/12), though performance on intrinsic
metrics is more mixed; (ii) on Cora, where GNN feedback was more reliable than LLM feedback, we see that using
the GNN pseudo labels is more effective; (iii) on WikiCS, where LLM feedback is much more reliable, we see
dominant performance by LLM feedback with cross entropy loss; and (iv) we see that the cross entropy loss (9/12
Acc., 7/12 Modularity, 7/12 NMI) is more effective than the triplet for finetuning.

(starting performance) \ GNN Feedback + Cross Ent. Loss \ LLM Feedback + Triplet Loss \ LLM Feedback + Cross Ent. Loss
Dataset Method Acc. (↑) NMI (↑) F1 (↑) ARI (↑) COND (↓) MOD (↑)

citeseer

diffpool (47.09) \54.69 \48.05 \58.96 (25.59) \25.94 \21.50 \26.84 (23.08) \23.57 \14.65 \19.70 (43.09) \43.33 \33.22 \41.41 (0.23) \0.23 \0.25 \0.24 (0.56) \0.56 \0.45 \0.50
dinknet (66.46) \66.43 \67.36 \67.40 (43.08) \43.30 \19.16 \36.97 (42.43) \41.30 \16.37 \27.16 (60.39) \60.58 \42.49 \47.91 (0.07) \0.07 \0.29 \0.09 (0.70) \0.70 \0.51 \0.62
dmon (47.89) \49.85 \48.75 \49.87 (28.49) \28.77 \27.11 \27.12 (24.29) \24.61 \18.86 \14.46 (43.65) \43.71 \34.14 \29.87 (0.19) \0.19 \0.25 \0.15 (0.60) \0.60 \0.45 \0.47
mincut (64.18) \66.70 \69.82 \67.51 (44.41) \46.21 \40.48 \39.60 (41.95) \43.25 \38.54 \35.81 (61.72) \62.11 \59.54 \59.81 (0.08) \0.09 \0.13 \0.17 (0.73) \0.73 \0.67 \0.64

cora

diffpool (59.97) \63.6 \43.38 \51.35 (43.46) \42.70 \20.97 \22.21 (36.58) \35.65 \7.83 \6.49 (56.76) \55.64 \29.3 \29.05 (0.24) \0.25 \0.38 \0.32 (0.60) \0.60 \0.33 \0.34
dinknet (68.26) \66.84 \67.32 \65.16 (51.98) \50.87 \25.01 \23.42 (44.21) \40.50 \15.16 \9.25 (62.09) \59.20 \41.86 \27.40 (0.12) \0.11 \0.30 \0.08 (0.70) \0.67 \0.49 \0.29
dmon (57.56) \60.27 \59.06 \56.70 (41.60) \42.24 \30.18 \30.06 (33.76) \34.64 \20.66 \13.67 (50.94) \51.40 \39.44 \29.40 (0.27) \0.26 \0.38 \0.12 (0.56) \0.58 \0.42 \0.33
mincut (64.17) \66.63 \59.91 \61.62 (48.92) \48.92 \39.74 \41.61 (40.35) \40.35 \29.43 \30.54 (58.33) \58.33 \47.28 \54.01 (0.14) \0.14 \0.21 \0.28 (0.70) \0.70 \0.56 \0.54

wikics

diffpool (43.15) \49.69 \55.44 \58.03 (26.27) \26.36 \37.20 \35.03 (18.87) \19.50 \31.10 \26.28 (39.88) \39.70 \41.12 \46.48 (0.34) \0.35 \0.30 \0.34 (0.48) \0.47 \0.36 \0.44
dinknet (66.80) \73.65 \67.48 \74.00 (49.00) \51.84 \47.49 \51.25 (47.80) \53.04 \46.18 \51.57 (56.23) \63.06 \56.97 \63.06 (0.23) \0.21 \0.28 \0.23 (0.55) \0.55 \0.52 \0.54
dmon (38.60) \39.68 \43.28 \51.87 (27.47) \27.49 \29.33 \32.51 (20.55) \20.65 \27.48 \31.04 (34.02) \34.18 \34.48 \36.49 (0.48) \0.47 \0.42 \0.26 (0.33) \0.33 \0.33 \0.31
mincut (24.70) \32.84 \38.52 \46.36 (6.14) \8.32 \17.99 \16.52 (-0.37) \-0.32 \18.02 \4.8 (7.91) \8.45 \24.71 \24.36 (0.04) \0.04 \0.45 \0.47 (0.03) \0.05 \0.30 \0.27

and neighborhood samplers, as well as other tech-
niques for dealing with large graphs, can be used
to further support finetuning. Thus, GCLR can be
seen as scaling linearly with the size of the dataset,
if we assume that the same portion of the initial
solution is selected for obtaining feedback.

4 Experiments
In this section, we verify the effectiveness of
GCLR in refining graph clustering solutions across
several public datasets with different graph cluster-
ing algorithms.

Experimental Setup. Our set-up is as follows.
Baselines. We consider the following graph cluster-
ing baselines: MinCutPool (Bianchi et al., 2020),
DMoN (Tsitsulin et al., 2023), DiffPool (Ying et al.,
2018), and DinkNet (Liu et al., 2023). Metrics.
As we use public datasets with available ground-
truth clustering, we report accuracy, Normalized
Mutual Information, F1, and Adjusted Rand-Index
between the predicted and labeled clusters. We
intrinsically assess the clustering quality using con-
ductance and modularity (see App. F for their pre-
cise definitions). We use embeddings obtained
from SBERT as node features for all experiments.
Datasets. We provide the dataset statistics in Ta-
ble G. Training. Both the initial GNN and subse-
quently finetuned models are trained with early-
stopping and the learning rate is tuned amongst
1e-4 and 1e-3.

GCLR. Unless otherwise noted, we use
mixtral-8x-7b as the oracle LLM and seek feed-
back on 10% of the nodes in the dataset. (Please see
D for additional results with ChatGPT.) The query
function, Q, is defined to select nodes according to

prediction entropy (Wang and Shang, 2014). Here,
high entropy nodes are less well-clustered, and la-
beling them would provide useful information. α
and β are both set to 0.5, unless otherwise noted.
Results are averaged over 10 seeds.

Results. The following observations are made
using Tables 2, 3 and 4.

Observation 1. We begin by confirming that
the LLM provides valuable information through its
feedback by demonstrating, in Table 2, that sub-
sequent finetuning not only improves performance
over the starting clustering solution but also over
finetuning on GNN pseudo labels, when reliable.
Additionally, we find that using the cross entropy
loss is more effective than the triplet loss when fine-
tuning using the LLM feedback. This is in contrast
to ClusterLLM, which focused on triplets. Lastly,
we note that confidence filtering and ensembling
are not applied in Table 2, so performance can
further be improved.

Observation 2. Next, we seek to understand how
filtering samples according to confidence can im-
prove GCLR’s performance. We do note that both
the GNN and LLM feedback are not guaranteed to
be calibrated, but nonetheless empirically find their
confidences useful. In particular, in Table 3, we set
α = 0.5 and β = 0.5, and consider 2 different fil-
terings: one where the GNN’s confidence interval
is high and the other where the LLM’s confidence
interval is high. We find that updating the model
using only high confidence LLM feedback (80th
percentile) and GNN feedback at lower percentile
improves the accuracy 8/12 times. We posit that the
relatively large set of low confidence GNN samples
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Table 3: Effect of Confidence Filtering. Though feed-
back reliability is unknown apriori, prediction confi-
dence can be used to select samples where the feedback
is more likely to be reliable. Here, samples are filtered
based on ascending confidence percentile (increasing
difficulty). (See Table 7 for full results.) We observe
that filtering improves performance without filtering
(11/24 Acc.) and over the starting, GNN solution (17/24
Acc.). In particular, 80% LLM and 20% GNN filter-
ing improves performance over no filtering (8/12 NMI,
10/12 Mod.) Best performance. (Starting GNN Acc.)

Dataset Method LLM GNN Acc. NMI F1 ARI COND MOD

citeseer

diffpool
(47.09)

20 80 53.04 22.67 15.06 34.93 0.31 0.45
80 20 56.71 26.94 23.18 41.90 0.21 0.56
0 0 58.96 26.84 19.70 41.41 0.24 0.50

dinknet
(66.35)

20 80 67.61 38.14 32.03 50.99 0.08 0.64
80 20 67.43 40.23 37.88 56.47 0.10 0.67
0 0 67.40 36.97 27.16 47.91 0.09 0.62

dmon
(47.89)

20 80 51.21 26.85 18.27 31.64 0.15 0.50
80 20 51.14 30.06 25.30 41.72 0.17 0.59
0 0 49.87 27.12 14.46 29.87 0.15 0.47

mincut
(64.17)

20 80 61.42 31.79 26.94 47.84 0.26 0.56
80 20 65.40 41.32 38.01 59.37 0.13 0.69
0 0 67.51 39.60 35.81 59.81 0.17 0.64

help stabilize training, while the high confidence
LLM feedback helps enhance the overall clustering
solution.

Observation 3. In settings where the LLM’s
feedback is less reliable than the GNN’s, it is pos-
sible to harm the initial clustering solution when
updating the intial clustering solution. For exam-
ple, in Table 1, on Cora, the LLM’s feedback is
less reliable than the GNN’s, and in Table 2, we
see finetuning on GNN feedback leads to better
performance than the LLM’s. However, we note
that even if the LLM’s feedback is unreliable it may
still contain valuable information. To this end, we
create a simple deep ensemble that captures differ-
ent levels of certainity in either source’s feedback
by varying α and β when aggregating the loss. In
particular, we train 5 different models, where we
sample α ∈ [0, 0.1, . . . 0.5] and β ∈ [0.5, 0.6 . . . 1]
at evenly spaced intervals. In Table 4, we show that
using this ensemble can improve performance over
a single model where α = β = 0.5, and see that
GCLR improves over the initial clustering solution
as desired.

Observation 4. While the above experiments
identify query samples according to their entropy,
other query functions are viable (Wang and Shang,
2014; Ducoffe and Precioso, 2018). In Table 5
(Appendix), we consider the following alternative
query functions: random sampling, sampling the
least confidence queries, and sampling queries with
the smallest margin between the top-2 predicted
clusters. While random sampling incurs some loss
in performance, we find that margin sampling per-

forms similarly to entropy sampling and sampling
according to least confidence actually improves
performance in some cases.

Observation 5. Traditional active learning gen-
erally benefits from increasing the labeling budget
as the oracle provides additional reliable feedback.
In contrast, we find in Table 6 that increasing the
budget does not have a substantial impact on perfor-
mance. We believe this is partially due to an imper-
fect oracle and the bootstrapping that occurs from
stabilizing training with GNN provided pseudo-
labels.

Table 4: Ensembling Improves Performance with
Unreliable Feedback. Here, we create a deep ensemble
by sampling different α and β to simulate different
levels of confidence in each ensemble source. On Cora,
where the LLM’s feedback is known to be unreliable,
we find that ensembling improves the performance of
over a single model where α = 0.5 and β = 0.5, and
surpasses the performance of the starting solution as
desired. Overall, this indicates that GCLR can help
improve the initial clustering solution (highlighted in
gray) even with unreliable feedback.

Method Ens? Acc. NMI F1 ARI COND MOD

diffpool
starting 59.97 43.36 36.58 56.76 0.24 0.60

✗ 51.35 22.21 6.49 29.05 0.32 0.34
✓ 61.88 45.74 38.97 58.20 0.22 0.62

dinknet
starting 68.26 51.98 44.21 62.09 0.12 0.70

✗ 65.16 23.42 9.25 27.40 0.08 0.29
✓ 69.36 52.66 45.28 63.12 0.12 0.70

dmon
starting 57.56 41.60 33.76 50.94 0.27 0.56

✗ 56.70 30.06 13.67 29.40 0.12 0.33
✓ 60.60 43.25 37.60 52.41 0.24 0.58

mincut
starting 64.17 48.92 40.35 58.33 0.14 0.70

✗ 61.62 41.61 30.54 54.01 0.28 0.54
✓ 64.63 48.96 40.77 58.79 0.14 0.70

5 Discussion
In this work, we proposed GCLR to improve
graph clustering solutions on text attributed graphs
by eliciting feedback from LLMs. In order to
avoid large prompting expenditure, GCLR actively
queries the LLM on only uncertain nodes and uses
various prompting strategies to obtain clustering
feedback. This feedback is then used to update
the initial GNN based clustering solution. Since
LLM and GNN feedback can be unreliable, confi-
dence filtering and ensembling are used to further
improve performance. Given that GCLR’s efficacy
is constrained by the quality of the LLM provided
feedback, future directions of work include design-
ing prompting/training strategies to improve the
reliability of the LLM oracle.
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6 Limitations
There are several limitations of GCLR that primar-
ily arises from the reliability of the LLM and use-
fulness of textual attributes. Indeed, if the textual
attributes are not amenable to the LLM or relevant
for improving the gnn-based clustering solution,
then GCLR is unlikely to lead to improvements by
relying upon the LLMs. For such applications, it is
more valuable to seek alternative sources of feed-
back or information that can improve the solution.
Moreover, if the LLM is consistently unreliable,
finetuning on this feedback is effectively adversar-
ial, and will lead to decreased performance relative
to the starting GNN solution. Similarly, there is a
risk that biases in the LLM can be propagated to
the GNN as well.

7 Potential Risks

We do not believe there are notable societal impacts
or risks from this work. We use existing large
language models so their is potential to inherit their
biases and hallucinations. We used ChatGPT to
help with editing the writing.
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B Related Work

In this section, we briefly introduce deep attributed graph clustering and relevant works for combining
LLMs and GNNs when working with TAGs. Please see Liu et al. (2022) and Jin et al. (2023), respectively,
for comprehensive surveys.

Deep Attributed Graph Clustering. While unattributed graph clustering has a rich history in network
analysis through modularity maximization, spectral clustering, and cuts-based approaches, the success
of GNNs in graph representation learning has lead to growing interest in deep clustering methods that
efficiently leverage both node-level attributes and topology. Broadly, such methods either (i) learn node
representations using a self-supervised or unsupervised objective, and then perform clustering given these
representations or (ii) learn both the embeddings and clustering assignments end-to-end through special-
ized clustering-based losses. While reconstructive (Zhang et al., 2023a; Bo et al., 2020) and adversarial
frameworks (Gong et al., 2022) were initially popular, in this work, we focus on contrastive (Liu et al.,
2023; Xia et al., 2022; Thakoor et al., 2022; Devvrit et al., 2022) and pooling-based methods (Tsitsulin
et al., 2023; Bianchi et al., 2020; Ying et al., 2018). Such methods, which, respectively, use contrastive
losses to learn discriminative node representations or propose novel pooling layers that optimize for
clustering-based losses (e.g., spectral relaxations of modularity or mincut), are more performative, efficient,
and scalable than adversarial or reconstructive approaches. Moreover, as we will discuss in Sec. 3.2, these
methods are more amenable to fine-tuning. Indeed, fine-tuning contrastively pre-trained representations
is well-known to induce state-of-the-art performance on a variety of supervised tasks in both vision and
graph representation learning.

LLMs + Graphs. Recent approaches that seek to combine graphs/GNNs and natural-language/LLMs
can be categorized as being “predictors" (the LLM provides predictions), “encoders" (sentence trans-
formers or other LLMs are used to provide input node features), or “aligners" (GNNs and LLMs jointly
trained to perform the task) (Jin et al., 2023). Various mechanisms, including prompting (Jiang et al.,
2023), fine-tuning (Liu et al., 2024), variational expectation maximization (Zhao et al., 2023b), joint
optimization (Li et al., 2023), and distillation (West et al., 2021), have been proposed to fulfill these roles,
typically on supervised tasks. Instead, GCLR uses the LLM as a refiner and enhancer, as the LLM is
only prompted to provide feedback for updating the underlying GNN-based graph clustering solution and
sentence transformers are used to provide input node embeddings. This allows us to avoid the expensive
fine-tuning of either LLMs or pre-trained language models, as well as exploit the scalability of graph
clustering algorithms.

Moreover, we note that existing work has primarily focused on supervised tasks (mostly node classifi-
cation and to a lesser extent link prediction), and does not assume budget constraints, prompting over the
entire graph or finetuning PLMs/LLMs. For example, TAPE (He et al., 2023), a recent prompting focused
LLM-as-Encoder method, prompts the LLM at every node for a class prediction and explanation, before
fine tuning a pretrained language model to obtain embeddings. Prompting for every node can be extremely
expensive in the case of large graphs, and, in our setting, we do not have pre-determined class labels to
simplify how feedback is obtained from the LLM, making it challenging to finetune the PLM. Similarly,
SimTeG (Duan et al., 2023), a fine-tuning based LLM-as-Encoder method, uses LoRA to train the LLM
directly on the downstream node classification task, before extracting embeddings for training a GNN.
Such an approach requires both supervision (which is unavailable in graph clustering) and fine-tuning of
language models, which can incur expensive hardware and skills requirements. LLM-GNN (Chen et al.,
2024) is a concurrent LLM-as-Encoder method that selectively prompts the LLM for feedback, but only
considers a node classification task. Here, provided class labels ensure that the GNN and LLM are using
aligned similarity functions, making it easier to obtain useful feedback. In contrast, on graph clustering,
the LLM must infer as well as align with the GNN’s implicit similarity function to provide meaningful
feedback. On the other hand, LLM-as-Predictor methods seek to pass structural and textual attribute
information directly to the LLM to make predictions. However, in our setting, where we assume a limited
budget, it may be infeasible to prompt every node to obtain a cluster assignment. Other LLM-as-Predictor
methods seek to perform graph-aware finetuning of PLMs and LLMs (Zhu et al., 2023), which can also
be expensive. Lastly, we note that to the best of our knowledge, graph clustering has not been explored by

14



LLM-as-Predictor methods, so it is unclear if LLMs are able to infer sufficient topological information to
effectively assign clusters.
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C Ablation Results

Table 5: Query Function Ablation.We report performance on the following query strategies: random sampling
\ entropy sampling \ least confidence \ margin sampling. We observe that while there is a slight decrease in
performance when using random sampling as the query function, overall margin sampling perform similarly to
entropy sampling. Least confidence sampling, in fact, improves performance on a few cases.

Dataset Method Acc. NMI F1 ARI COND MOD

citeseer diffpool 49.45\59.56\60.19\59.38 26.47\27.75\28.38\23.21 8.47\13.16\12.88\8.74 33.87\31.93\31.16\29.23 0.16\0.11\0.09\0.1 0.39\0.34\0.33\0.29
dinknet 46.14\56.99\58.16\57.9 6.62\35.41\35.8\36.2 2.81\22.96\22.28\22.96 10.65\37.79\37.39\40.21 0.02\0.22\0.22\0.21 0.07\0.43\0.43\0.44
dmon 37.94\51.74\52.18\51.31 7.73\27.88\28.34\27.54 2.53\18.42\18.2\17.98 11.86\33.67\33.88\32.75 0.06\0.15\0.15\0.15 0.16\0.51\0.5\0.5
mincut 64.08\63.4\63.56\61.16 34.45\34.74\35.16\39.89 30.4\31.31\31.42\30.13 55.48\54.43\55.27\49.44 0.24\0.23\0.23\0.31 0.56\0.58\0.58\0.52

cora diffpool 68.7\66.53\66.55\66.52 43.99\45.88\45.32\45.52 36.35\42.32\42.02\41.83 55.24\54.14\53.08\53.96 0.32\0.26\0.26\0.26 0.5\0.53\0.53\0.53
dinknet 35.33\42.7\42.4\42.67 14.46\26.75\26.51\26.92 10.65\19.01\18.61\19 11.3\30.6\30.01\30.12 0.08\0.39\0.38\0.37 0.13\0.29\0.29\0.29
dmon 46.14\56.99\58.16\57.9 6.62\35.41\35.8\36.2 2.81\22.96\22.28\22.96 10.65\37.79\37.39\40.21 0.02\0.22\0.22\0.21 0.07\0.43\0.43\0.44
mincut 61.16\61.52\60.5\60.61 39.89\40.94\39.78\40.05 30.13\29.34\29\30.1 49.44\50.6\50.34\50.5 0.31\0.31\0.33\0.32 0.52\0.51\0.5\0.5

wikics diffpool 37.94\51.74\52.18\51.31 7.73\27.88\28.34\27.54 2.53\18.42\18.2\17.98 11.86\33.67\33.88\32.75 0.06\0.15\0.15\0.15 0.16\0.51\0.5\0.5
dinknet 64.08\63.4\63.56\61.78 34.45\34.74\35.16\33.38 30.4\31.31\31.42\29 55.48\54.43\55.27\54.02 0.24\0.23\0.23\0.25 0.56\0.58\0.58\0.57
dmon 35.33\42.7\42.4\42.67 14.46\26.75\26.51\26.92 10.65\19.01\18.61\19 11.3\30.6\30.01\30.12 0.08\0.39\0.38\0.37 0.13\0.29\0.29\0.29
mincut 46.4\46.92\44.46\45.76 22.06\18.61\20.11\18.19 11.57\5.6\6.79\9.08 28.09\22.16\22.67\22.37 0.27\0.24\0.28\0.21 0.22\0.16\0.2\0.16

Table 6: Ablation on the Labeling Budget. We report performance when the LLM labeling budget is 20% \
40% \ 60% \ 80% \ 100%. We find that increasing the budget does not substantially increase performance, unlike
traditional active learning. We hypothesize this is partially due to regularizing training using GNN pseudo-labels
and the imperfect LLM oracle.

Dataset Method Acc. NMI F1 ARI COND MOD

citeseer

diffpool 54.43\53.82\52.77\53.05\54.66 23.52\22.7\22.59\22.76\22.21 15.33\15.3\15.2\15.54\15.23 35.44\36.46\36.72\36.88\36.52 0.3\0.3\0.31\0.32\0.32 0.45\0.45\0.45\0.44\0.44
dinknet 69.81\69.84\69.81\69.81\69.81 34.15\36.98\36.61\36.38\36.19 26.36\29.83\29.23\28.97\28.82 45.51\48.06\47.35\47.13\46.93 0.07\0.07\0.07\0.07\0.07 0.6\0.62\0.61\0.61\0.61
dmon 51.81\51.63\51.62\51.3\51.25 28.17\29.15\28.99\29.19\29.1 18\18.82\18.37\18.65\18.56 31.84\32.72\32.66\32.53\32.45 0.13\0.14\0.15\0.15\0.15 0.5\0.5\0.5\0.5\0.5
mincut 63.57\61.68\63.12\63.98\64.14 34.44\32.88\33.4\32.94\32.7 29.95\27.77\28.04\27.41\27.23 55.75\54.3\54.29\53.44\52.27 0.26\0.31\0.3\0.31\0.3 0.55\0.51\0.51\0.51\0.51

cora

diffpool 55.55\55.44\55.61\56.67\56.53 24.17\24.81\24.9\24.97\25.18 9.91\10.06\10.35\10.9\11.02 31.91\32.92\33.57\34.3\34.25 0.41\0.43\0.44\0.44\0.44 0.34\0.33\0.32\0.33\0.34
dinknet 59.97\60.01\60.01\59.97\60.04 24.84\25.72\25.36\25.53\25.23 10.19\10.89\10.43\10.43\10 30.36\30.74\30.58\30.79\30.47 0.09\0.09\0.09\0.09\0.09 0.32\0.33\0.32\0.32\0.31
dmon 58.14\58.89\59\58.91\58.91 35.71\36.31\36.95\37.39\37.5 22.31\21.97\21.82\21.85\22.25 38.78\37.71\37.93\39.24\39.44 0.21\0.22\0.21\0.2\0.19 0.43\0.43\0.44\0.44\0.45
mincut 60.43\62.17\59.4\60.54\60.76 38.36\37.51\38.47\38.18\38.84 28.27\27.65\28.51\28.37\29.36 48.36\47.79\48.61\47.87\47.84 0.36\0.37\0.38\0.37\0.38 0.47\0.46\0.45\0.46\0.46

subtagwikics

diffpool 49.75\51.71\52.18\51.31\52.5 30.03\30.54\30.14\31.23\30.73 20.62\22.71\19.96\19.74\20.97 40.33\40.68\37.45\38.23\39.88 0.43\0.39\0.39\0.39\0.41 0.39\0.42\0.42\0.38\0.4
dinknet 66.56\66.54\66.54\66.51\66.52 46.13\45.77\45.73\45.68\45.62 42.49\42.43\42.31\42.14\42.05 54.59\54.27\54.16\54.14\54.21 0.26\0.25\0.26\0.26\0.26 0.53\0.53\0.53\0.53\0.53
dmon 42.99\42.83\42.9\43.05\43.13 27.31\27.7\27.83\28.09\28.32 19.24\19.35\19.57\19.73\19.97 30.42\30.68\30.76\31.06\31.12 0.37\0.37\0.37\0.36\0.36 0.29\0.29\0.3\0.3\0.3
mincut 44.91\44.01\44.53\43.05\44.98 18.36\17.12\20.1\19.83\18.77 5.11\5.97\9.44\9.48\6.2 21.5\18.35\25.49\18.43\19.59 0.28\0.22\0.3\0.3\0.26 0.16\0.14\0.15\0.17\0.19
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Table 7: Effect of Confidence Filtering. While we do not know the reliability of either the LLM or GNN’s feedback
apriori, we can use their confidence to select samples where the feedback is more likely to be reliable to avoid
finetuning on misleading samples. Here, we filter samples based on the ascending confidence percentile, so the 80th
percentile corresponds to samples whose confidence is greater than or equal to 80% of total samples. We observe
that filtering improves performance without filtering (11/24 Acc.) and over the starting (no finetuning) solution
(17/24 Acc.). In particular, 80% LLM and 20% GNN filtering improves performance over no filtering (8/12 NMI,
10/12 Mod.) On WikiCS, no filtering performs the best, suggestive of the LLM’s better reliability. Best performance
is bolded and accuracy of the starting solution is in parentheses.

Dataset Method LLM GNN Acc. NMI F1 ARI COND MOD

citeseer

diffpool
(47.09)

20 80 53.04 22.67 15.06 34.93 0.31 0.45
80 20 56.71 26.94 23.18 41.90 0.21 0.56
0 0 58.96 26.84 19.70 41.41 0.24 0.50

dinknet
(66.35)

20 80 67.61 38.14 32.03 50.99 0.08 0.64
80 20 67.43 40.23 37.88 56.47 0.10 0.67
0 0 67.40 36.97 27.16 47.91 0.09 0.62

dmon
(47.89)

20 80 51.21 26.85 18.27 31.64 0.15 0.50
80 20 51.14 30.06 25.30 41.72 0.17 0.59
0 0 49.87 27.12 14.46 29.87 0.15 0.47

mincut
(64.17)

20 80 61.42 31.79 26.94 47.84 0.26 0.56
80 20 65.40 41.32 38.01 59.37 0.13 0.69
0 0 67.51 39.60 35.81 59.81 0.17 0.64

cora

diffpool
(59.97)

20 80 55.28 29.53 16.07 39.33 0.39 0.39
80 20 61.94 41.64 36.77 55.67 0.27 0.57
0 0 51.35 22.21 6.49 29.05 0.32 0.34

dinknet
(66.20)

20 80 67.15 36.21 24.09 42.83 0.13 0.50
80 20 67.87 48.03 36.82 52.04 0.12 0.66
0 0 65.16 23.42 9.25 27.40 0.08 0.29

dmon
(57.55)

20 80 58.07 36.72 24.99 40.19 0.23 0.47
80 20 62.06 41.79 35.56 50.52 0.25 0.57
0 0 56.70 30.06 13.67 29.40 0.12 0.33

mincut
(64.17)

20 80 61.04 38.40 28.22 48.95 0.34 0.50
80 20 64.55 47.15 38.89 57.82 0.19 0.65
0 0 61.62 41.61 30.54 54.01 0.28 0.54

wikics

diffpool
(43.34)

20 80 51.53 27.52 17.87 37.83 0.41 0.39
80 20 50.60 24.03 16.68 34.87 0.40 0.42
0 0 58.03 35.03 26.28 46.48 0.34 0.44

dinknet
(71.25)

20 80 66.51 45.90 41.76 54.10 0.26 0.53
80 20 66.79 48.39 41.85 55.66 0.23 0.54
0 0 74.00 51.25 51.57 63.06 0.23 0.54

dmon
(37.515)

20 80 42.81 27.14 19.03 30.33 0.37 0.29
80 20 40.92 28.11 20.24 32.39 0.46 0.33
0 0 51.87 32.51 31.04 36.49 0.26 0.31

mincut
(24.70)

20 80 42.79 19.16 7.50 17.07 0.27 0.23
80 20 43.58 14.74 3.77 19.57 0.30 0.14
0 0 46.36 16.52 4.80 24.36 0.47 0.27
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D Additional Results with ChatGPT

In this section, we evaluate GCLR using feedback obtained from ChatGPT-3.5-Turbo, instead of Mixtral-
8b, to demonstrate its robustness to choice of LLM. We note that obtaining feedback from ChatGPT
is fairly expensive for us, so we only obtain feedback on 200 nodes. We select the 200 most difficult
nodes for feedback, where difficult is defined according to the entropy of the distance to a sample’s two
nearest clusters. Here, a sample that is equidistant and relatively from the cluster centers would is more
difficult and is selected over a sample that is close to a single center (well-clustered). Given the strong
performance of GCLR with even this limited number of samples from a very powerful LLM, suggests
that performance would be further improved with a larger budget. We note that due to the limited number
of feedback samples, we perform a single round of fine-tuning to prevent over-fitting to feedback samples,
instead of dividing the feedback over multiple rounds. Finally, please note that we had to retrain the base
GNNs for these experiments, so the starting accuracy of the original GNNs may be slightly different that
those reported in the main paper. All results are reported using the "concepts" feedback strategy unless
otherwise noted. We strongly emphasize, however, that we are interested in observing the improvement of
GCLR relative to the starting model, and we clearly observe its benefits in the following tables.

Table 8: Feedback Elicitation. We evaluate three different strategies for obtaining LLM guidance by measuring
their accuracy in predicting the correct cluster assignment (wrt to known ground-truth label) on the 200 hardest
samples as per the initial GNN clustering. The GNN’s accuracy on ALL samples is reported in parenthesis. We
observe that the Concepts strategy achieves the best performance on 10/12 datasets.

Dataset Clustering Method Concepts InContext Triplets

citeseer

diffpool (0.496) 0.295 0.24 0.26
dinknet (0.703) 0.385 0.385 0.38
dmon (0.441) 0.415 0.34 0.35
mincut (0.665) 0.415 0.33 0.37

cora

diffpool (0.547) 0.14 0.29 0.29
dinknet (0.658) 0.355 0.235 0.295
dmon (0.609) 0.355 0.15 0.31
mincut (0.684) 0.54 0.25 0.235

WikiCS

diffpool (0.483) 0.365 0.290 0.235
dinknet (0.665) 0.24 0.240 0.330
dmon (0.370) 0.335 0.235 0.27
mincut (0.269) 0.08 0.01 0.015

Table 9: ChatGPT Provides Complementary Information When Finetuning In order to demonstrate ChatGPT
provided labels capture complementary, beneficial information to the GNN, here, we compare performance of
models that were only fine-tuned with GNN pseudo-labels and those that were fine-tuned with GNN and LLM
pseudo-labels. Notably, we do not filter the LLM’s nor the GNN labels for high confidence; allowing the mistakes
from either source. The better result is underlined between (GNN Only / LLM+GNN). We observe that incorporating
the raw LLM feedback improves the clustering solution noticeably on the extrinsic metrics (7/12 Acc), (10/12 NMI),
(9/12 F1) but has mixed, but competitive performance on extrinsic metrics.

Method Dataset Acc NMI ARI F1 Cond Mod

DiffPool Citeseer 54.110 / 55.740 33.710 / 36.240 27.430 / 30.920 45.290 / 49.100 0.146 / 0.164 0.633 / 0.630
DinkNet Citeseer 69.520 / 69.718 45.200 / 45.733 44.370 / 45.343 65.330 / 65.570 0.068 / 0.065 0.701 / 0.706
Dmon Citeseer 46.400 / 49.030 29.585 / 30.550 24.295 / 26.670 43.395 / 44.230 0.210 / 0.199 0.582 / 0.573
MinCut Citeseer 67.360 / 67.950 46.520 / 46.960 44.820 / 46.000 65.160 / 65.420 0.081 / 0.078 0.726 / 0.720

DiffPool Cora 60.160 / 59.270 45.790 / 39.550 40.320 / 29.880 52.350 / 51.340 0.200 / 0.211 0.610 / 0.511
DinkNet Cora 60.860 / 64.700 47.930 / 50.420 33.520 / 36.440 50.530 / 55.940 0.124 / 0.110 0.620 / 0.642
Dmon Cora 62.080 / 61.410 42.345 / 42.615 35.055 / 33.995 54.220 / 53.885 0.241 / 0.253 0.581 / 0.574
MinCut Cora 68.650 / 71.530 52.270 / 53.830 47.050 / 49.950 63.740 / 64.960 0.146 / 0.152 0.705 / 0.691

DinkNet WikiCS 63.510 / 62.770 49.680 / 49.230 44.050 / 43.730 59.130 / 58.520 0.243 / 0.245 0.536 / 0.540
DiffPool WikiCS 52.390 / 52.070 37.500 / 39.500 27.520 / 28.820 48.230 / 46.820 0.304 / 0.294 0.504 / 0.513
Dmon WikiCS 38.420 / 38.390 30.420 / 30.910 23.140 / 23.400 33.380 / 33.390 0.444 / 0.438 0.358 / 0.367
MinCut WikiCS 30.430 / 34.370 17.040 / 21.750 0.900 / 4.490 12.810 / 16.160 0.054 / 0.073 0.118 / 0.134
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Table 10: GCLR with ChatGPT Improves the Performance of Graph Clustering Solutions. Here, we consider
GCLR’s performance across different confidence filtering levels (for both the GNN and LLM), and compare its
performance when using the triplet loss (instead of cross entropy). In particular, we consider two different confidence
percentiles, 20% and 80%, denoted low and high below respectively. Aside from DinkNet, which uses a contrastive
loss during training, we find that GCLR with cross-entropy and confidence filtering improves the performance over
the starting GNN solution. The performance of starting GNN solution is denoted in parenthesis. Second Best, First.
(Cross Entropy /Triplets).

Dataset Method LLM Conf. GNN Conf. Acc NMI ARI F1 Cond Mod

Citeseer DiffPool (49.6) low low 53.360 / 49.560 34.460 / 28.730 30.040 / 26.320 46.430 / 44.770 0.175 / 0.199 0.619 / 0.606
Citeseer DiffPool low high 52.480 / 47.390 32.050 / 25.990 27.670 / 23.830 45.110 / 41.160 0.160 / 0.232 0.618 / 0.565
Citeseer DiffPool high low 51.570 / 49.690 36.200 / 28.920 29.870 / 26.460 43.270 / 44.830 0.153 / 0.200 0.639 / 0.606

Citeseer DinkNet (70.3) low low 69.400 / 71.030 45.440 / 46.370 44.600 / 49.500 65.130 / 66.640 0.072 / 0.066 0.696 / 0.721
Citeseer DinkNet low high 64.780 / 70.090 42.740 / 45.600 38.540 / 47.720 59.130 / 65.390 0.066 / 0.064 0.655 / 0.717
Citeseer DinkNet high low 69.240 / 71.030 44.650 / 46.320 44.130 / 49.430 64.680 / 66.610 0.072 / 0.067 0.696 / 0.720

Citeseer Dmon (44.1) low low 48.780 / 45.135 30.090 / 29.680 26.050 / 27.645 45.570 / 36.660 0.219 / 0.191 0.574 / 0.547
Citeseer Dmon low high 50.410 / 46.030 32.230 / 30.945 27.880 / 29.435 44.750 / 37.540 0.193 / 0.167 0.577 / 0.571
Citeseer Dmon high low 48.590 / 45.200 30.620 / 29.690 26.110 / 27.675 45.650 / 36.735 0.208 / 0.191 0.583 / 0.546

Citeseer MinCut (66.50) low low 68.490 / 70.030 47.370 / 47.650 46.950 / 48.360 65.620 / 66.170 0.075 / 0.061 0.719 / 0.740
Citeseer MinCut low high 68.680 / 71.940 47.570 / 48.860 47.260 / 50.600 65.570 / 67.350 0.072 / 0.065 0.717 / 0.729
Citeseer MinCut high low 68.080 / 70.030 46.950 / 47.690 46.260 / 48.400 65.540 / 66.180 0.072 / 0.061 0.729 / 0.740

Cora DiffPool (54.7) low low 59.710 / 53.210 41.250 / 39.010 33.440 / 32.120 51.400 / 49.130 0.213 / 0.268 0.542 / 0.571
Cora DiffPool low high 59.310 / 54.470 39.610 / 40.450 30.640 / 33.220 49.860 / 49.720 0.223 / 0.245 0.506 / 0.587
Cora DiffPool high low 61.630 / 53.360 42.590 / 39.110 40.430 / 32.340 53.510 / 49.220 0.206 / 0.270 0.571 / 0.568

Cora DinkNet (65.8) low low 63.770 / 65.030 47.270 / 49.510 36.480 / 42.510 53.760 / 54.900 0.127 / 0.118 0.639 / 0.680
Cora DinkNet low high 63.070 / 64.550 45.450 / 50.640 35.810 / 42.200 53.600 / 54.490 0.151 / 0.110 0.639 / 0.687
Cora DinkNet high low 61.630 / 65.140 43.900 / 49.620 34.460 / 42.620 48.200 / 55.050 0.144 / 0.119 0.629 / 0.680

Cora Dmon (60.9) low low 61.340 / 55.650 42.910 / 36.625 33.880 / 26.955 54.080 / 47.400 0.244 / 0.296 0.585 / 0.514
Cora Dmon low high 44.500 / 56.280 32.140 / 38.110 15.390 / 27.680 33.090 / 48.590 0.201 / 0.282 0.425 / 0.526
Cora Dmon high low 62.520 / 55.595 42.380 / 36.620 35.390 / 26.895 54.860 / 47.365 0.233 / 0.295 0.592 / 0.514

Cora MinCut (68.4) low low 71.680 / 71.230 53.920 / 54.960 50.750 / 48.640 65.570 / 62.940 0.150 / 0.128 0.695 / 0.704
Cora MinCut low high 72.050 / 71.900 54.070 / 54.510 51.270 / 49.910 66.740 / 63.380 0.154 / 0.128 0.692 / 0.702
Cora MinCut high low 71.530 / 71.310 53.750 / 55.100 50.890 / 48.790 65.140 / 63.020 0.153 / 0.127 0.691 / 0.704

WikiCS DiffPool (48.3) low low 54.330 / 52.100 40.280 / 31.260 31.920 / 27.480 48.220 / 45.690 0.291 / 0.294 0.515 / 0.503
WikiCS DiffPool low high 54.240 / 51.960 40.350 / 29.060 32.290 / 26.800 47.040 / 45.330 0.279 / 0.301 0.520 / 0.490
WikiCS DiffPool high low 52.680 / 51.920 37.510 / 31.090 29.500 / 27.230 47.030 / 45.590 0.294 / 0.293 0.506 / 0.503

WikiCS DinkNet (66.5) low low 62.470 / 65.800 48.900 / 48.780 43.380 / 44.380 58.020 / 59.610 0.243 / 0.233 0.546 / 0.548
WikiCS DinkNet low high 62.760 / 64.890 48.920 / 47.640 43.400 / 42.900 58.120 / 58.090 0.243 / 0.244 0.545 / 0.552
WikiCS DinkNet high low 61.870 / 65.800 48.750 / 48.780 43.170 / 44.380 57.220 / 59.610 0.245 / 0.233 0.544 / 0.548

WikiCS Dmon (37.0) low low 38.870 / 36.970 31.080 / 29.350 23.600 / 23.550 33.700 / 32.560 0.430 / 0.463 0.373 / 0.347
WikiCS Dmon low high 44.690 / 37.260 33.850 / 27.830 26.210 / 23.130 38.310 / 32.240 0.381 / 0.462 0.401 / 0.342
WikiCS Dmon high low 38.350 / 36.940 30.910 / 29.350 23.530 / 23.530 33.220 / 33.140 0.436 / 0.463 0.368 / 0.348

WikiCS MinCut (26.90) low low 37.230 / 26.860 23.030 / 12.770 8.150 / -0.770 17.410 / 10.480 0.072 / 0.055 0.143 / 0.064
WikiCS MinCut low high 40.750 / 28.660 22.270 / 10.920 13.870 / 3.400 19.520 / 11.750 0.083 / 0.337 0.182 / 0.139
WikiCS MinCut high low 36.430 / 26.620 21.990 / 13.200 6.820 / -0.770 16.090 / 10.320 0.058 / 0.058 0.139 / 0.069
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Figure 4: Ablation on Sensitivity to Confidence with ChatGPT Feedback. Here, we consider the sensitivity
of GCLR to the confidence filtering percentiles. Namely, we take only the top [0,10,—, 100]th percentile of the
feedback data and report the change in accuracy to the starting solution using the CORA dataset. The number
of samples at a particular percentile are indicated in parentheses, α and β are set to 0.5. We see that the best
performance is obtained at a moderate confidence percentile for both the GNN and LLM.
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E Prompt Examples

Table 11: Prompt Example: Triplets, CORA

PROMPT: Task: I’m clustering papers in a citation network according to research area and
need help determining where a particular query sample belongs given its abstract and title. I
will give you the abstracts/titles of two samples belonging to nearby clusters and you should
select the abstract/title that is more similar to the query in terms of research topic. Please
explain your reasoning and return your answer in a JSON format: {selection: [1,2,-1(neither or
unsure)], reasoning: [your reasoning]}.

[SAMPLE 1]
<Sample from 1st (2nd) Closest Cluster>]

[SAMPLE 2]
<Sample from 2nd (1st) Closest Cluster>]

[QUERY]
<Sample of Query Sample>]

[ANSWER]

21



Table 12: Prompt Example: Incontext, CORA

PROMPT:
[Example]
<Sample>
{Category: <GNN’s Predicted Cluster>}

. . .
[Example]
<Sample>
{Category: <GNN’s Predicted Cluster>}

[Task]
Given the above examples, please identify the correct category for the following query sample.
Please explain your reasoning and return your answer in a JSON format: category: [your
prediction], reasoning: [your reasoning]. If you’re unsure of an answer, select category -1.

[QUERY]
<QUERY>

[ANSWER]
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Table 13: Prompt Example: Concepts, CORA

CONCEPTS GENERATION PROMPT: Task: I’m clustering papers in a citation network
according to research area and need help coming up with cluster names. The following
num-exemplars papers that have been clustered together and I’m going to give you their
abstract/titles. Can you propose a < 7 word research topic and 2-3 sentence description for
this cluster? Try not to make it too specific or too broad, and explain your reasoning. Return
your answer in a JSON format: {topic: [your topic], description: [your description], reasoning:
[your reasoning]}.

SAMPLES FROM CLUSTER:
Sample 1
Sample 2
. . .
Sample Num-Exemplars

Answer:

CONCEPT PREDICTION PROMPT:
[Task]
I’m currently working on clustering papers within a citation network based on their ab-
stracts/titles. I’m seeking assistance in determining the cluster association for a specific
uncertain sample. You’ll be provided with the abstract/title of this sample, along with the titles
and short descriptions of num-clusters potential clusters. Your task involves carefully reading
each cluster title and description, taking a thoughtful approach, and selecting the cluster that
best aligns with the confusing sample. Please provide your answer in JSON format, including
the predicted cluster number, title of the predicted cluster, and your detailed reasoning. Your
response should look like this: {cluster: [your predicted cluster number], cluster title: [title of
predicted cluster], reasoning: [your reasoning for choosing this cluster]}. Take your time and
ensure clarity in your explanation.

[CLUSTER TITLES]
1. <GENERATED TITLE>
Description: <GENERATED TITLE DESCRIPTION>

2. <GENERATED TITLE>
Description: <GENERATED TITLE DESCRIPTION>

. . .
NUM-CLUSTERS. <GENERATED TITLE>
Description: <GENERATED TITLE DESCRIPTION>

[UNCERTAIN SAMPLE]
QUERY

[ANSWER]

23



F Metrics

We consider the following extrinsic and graph topology-based metrics in our evaluation. Let G =
(V, E , T ,X , [Y]) represent a graph with its respective node-set, edge-set, raw node based text information,
embedded node attribute information (e.g., some embedding of a node’s text), and optional ground-truth
cluster assignment. Further, let N be the number of the nodes, M be the number of edges, C be the
desired (or ground-truth) number of clusters, d the dimension of the hidden representation, A ∈ Rn×n be
the corresponding adjacency matrix, X ∈ RN×d be a matrix representation of X , Y ∈ [0, 1]C , dv be the
degree vector of a particular node v, and cv be the predicted cluster of a given node v.

• Modularity (Newman, 2006). Modularity measures the deviation with respect to nodes belonging
to the same cluster against the expectation of the nodes being connected given a null model where
nodes are connected randomly. Graphs with high modularity will have clusters where the majority of
the edges are contained with some cluster and few edges that cross the clusters. Modularity falls
within [−1

2 , 1], where a positive score indicates that the clustering structure that is above random,
and is defined as follows:

Q =
1

2m

∑
ij

[
A[ij] −

didj
2m

]
1[ci = cj ].

• Conductance (Yang and Leskovec, 2012; Shi and Malik, 1997). Also known as the Cheeger
coefficient, this metric measures how quickly a random walk on a graph will reach its stationary
distribution. Given a particular cluster, ĉ, the number of edges belonging to that cluster (intra-cluster
edges) can be computed as rĉ =

∑
u,v∈A 1[cu = ĉ, cv = ĉ], and the number of edges are not fully

contained in ĉ (inter-cluster edges) can be computed as sĉ =
∑

u,v∈A 1[cu = ĉ, cv ̸= ĉ]. Then,
conductance is defined as the average ratio of intra- and inter- cluster edges, where tight clusters are
expected to have relatively fewer inter cluster edges.

ϕ =
1

C

C∑
ĉ

sĉ
rĉ + sĉ

• Accuracy.

ACC =
n∑

i=1

ϕ(yi,map(ŷi))

n
(1)

ŷi represents the predicted cluster ID, while yi indicates the ground truth cluster ID label. map(.)
denotes the Kuhn-Munkres algorithm (Plummer and Lovász, 1986) which aligns the predicted
cluster-ID with the class-ID, and indicator function ϕ(.) is formulated as:

ϕ(yi,map(ŷi)) =

{
1 if yi = map(ŷi)

0 else
(2)

• Normalized Mutural Information.

NMI = −
2
∑

ŷ

∑
y p(ŷ, y) log

p(ŷ,y)
p(ŷ)p(y)∑

i p(ŷi) log (p(ŷi)) +
∑

j p(yj) log (p(yj))
(3)

where p(y), p(ŷ), and p(ŷ, y) represent the distribution of predicted results, distribution of the ground
truth, and joint distribution of them, respectively.

• Adjusted Random Index.

ARI =
RI − expectedRI

max(RI)− expectedRI
(4)
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where RI and expectedRI signifies the Rand Index and expected Rand Index (Yeung and Ruzzo,
2001), respectively. An ARI of 0 suggests disagreement between real and modeled clustering
in pairing, whereas an ARI of 1 indicates concordance between real and modeled clustering,
representing identical clusters.

• F1-Score.
F1 =

2.P recision.Recall

Precision+Recall
(5)

Precision =
TP

TP + FP
, Recall =

TP

TP + FN
(6)

where TP , FP , and FN indicate the number of true positive, false positive, and false negative
samples, respectively.

G Reproducibility Statement

All code will be released upon acceptance. We dropped the computation linguistic and web-technology
categories from WikiCS to create a more even and separate labeling for evaluation. We use the mixtral-8x-
7b model, and a G.5 (8 gpu) instance on AWS. We repeat results over 3 seeds.

Table 14: Dataset Statistics.

Dataset Num Nodes Num Edges Num Clusters

Cora (Bojchevski and Günnemann, 2017) 2,708 5,429 7
Citeseer (Yang et al., 2016) 3,327 4,732 6
WikiCS1 (Mernyei and Cangea, 2020) 10,601 204120 8

H Example of Generated Titles

Table 15: Generated Concepts. Below, are examples of concepts generated by chatgpt-3.5-turbo on Cora with
MinCut as the GNN clustering algorithm. While some concepts are imperfect, e.g., rule learning or theory, other
topics are well captured. Applying self-refinement strategies could improve these generated concepts, at additional
budget expenditure.

True Generated
Reinforcement Learning Reinforcement Learning and Dynamic Programming
Genetic Algorithms Evolutionary Algorithms in Problem Solving
Rule Learning Error Bounds in Learning Algorithms
Theory Feature Selection in Machine Learning’
Probabilistic Methods Bayesian Statistical Methods
Case Based Improving Case-Based Reasoning Adaptation
Neural Networks Neural Network Self-Organization
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